¡BIENVENIDOS!

¡Bienvenidos al blog del ABN! Un año más comenzamos un nuevo curso, llenos de esperanza e ilusión. Será el décimosexto año de aplicación del método ABN, desde que en el curso 2008-2009 se dieron los primeros pasos en los colegios “Andalucía” y “Carlos III”, de Cádiz. Seguimos adelante. Tenemos a muchos docentes y a muchos niños detrás, que empujan con una fuerza irresistible. Este blog recoge toda la historia del desarrollo del método, desde su primera entrada, allá por Marzo de 2010, hasta hoy. No hemos querido quitar nada. Y aquí seguimos con más de tres mil vídeos y cerca de las cuatro mil entradas, que se dice pronto.

El blog va a seguir siendo fiel a sus principios: mostrar que es posible calcular de otra manera más motivadora, más fácil, más conectada con el pensamiento de los niños, más adaptada a sus futuras necesidades. En definitiva, del modo más eficaz para que los alumnos alcancen competencia matemática.

Animamos a los docentes y a las familias a utilizar el nuevo método. Con él se acaban las tareas repetitivas de cálculo, las dificultades matemáticas sin sentido, el aprendizaje memorístico vacío. Y para convencer al visitante de que es posible nos hemos alejado de los discursos vanos y de la palabrería barata. El material fundamental de este blog es el reflejo de lo que hacen los niños en las clases: vídeos y fotos dan cuenta de ello. Nunca omitimos de qué colegio, de qué maestra o de qué grupo de alumnos se trata. Porque no expresamos fantasías ni delirios, sino resultados concretos.

¡Bienvenidos! Suscríbanse y estén al día de todos los contenidos que incorporamos. Intérnense dentro de las etiquetas y exploren los tópicos por los que tengan más interés, en los cursos de Infantil o Primaria que consideren. Súmense a una corriente que cada día crece más.

No duden en trasladarnos cualquier opinión, crítica, aportación, sugerencia o, simplemente, petición de información. Todo ello será recibido con agrado en:

Jmartínez1949@gmail.com

MÉTODO ABN

jueves, 22 de noviembre de 2012

El CEIP «Los Esteros», de San Fernando. Página web del colegio.

Se trata de un colegio ejemplar, en muchos sentidos, y que hemos tenido la suerte de que se incorpore a nuestra metodología. Todos saldremos ganando.

ABN en el CEIP "Serafina Andrades", de Chiclana.

Más muestras de su trabajo.


Numeración en Educación Infantil de 4 años.

Trabajando la numeración hasta el 20 en Infantil de 4 años. CEIP "Serafina Andrades", de Chiclana de la Frontera (Cádiz). La maestra es Marigel. Desde luego, los chicos aprenden y se lo pasan muy bien.

miércoles, 21 de noviembre de 2012

Recuerdo del curso de formación de Cartagena.

Me acaba de llegar y no resisto la tentación de poner este recuerdo de una actividad tan agradable como la que desarrollamos en Cartagena. Si se fijan, entenderán por qué hablo siempre de que el método ABN es sobre todo femenino.

martes, 20 de noviembre de 2012

¡ Otra ley de educación !

¡Justo lo que nos faltaba!

Quiero compartir el artículo publicado en los periódicos de la cadena Joly con todos los que no lo hayan podido leer.


División con dos cifras en el dividendo. Los comienzos.

Que no son nada fáciles. Aunque el vídeo no tiene mucha calidad (soy yo el operador), sí deja traslucir el proceso que seguimos. Puede ser de provecho, sobre todo lo bien que enseña el aprendizaje de la escala el profesor. Recordamos: comienza la división por dos cifras en 4º del CEIP "San Rafael", de Cádiz.
Tutor: Francisco Camero. 

domingo, 18 de noviembre de 2012

Producto por 2 cifras.

La alumna es Ángela de 3º de Primaria del CEIP "Serafina Andrade", de Chiclana (Cádiz), y realiza un producto de tres cifras por dos, mediante el algoritmo ABN. La maestra es Teresa Simonet.

Aunque el formato definitivo debe ser el que recoge en una sola columna todo el cálculo (es decir, no se multiplica sucesivamente por 20 y por 3, sino a la vez por 23), muchas maestras optan por este modelo en función de las siguientes razones:
1. Es una forma más suave de iniciar a los alumnos. Cuando tienen soltura en el producto sucsivo, entonces comienzan con el simultáneo.
2. Es una forma de que los niños y niñas con más dificultades o más lentos puedan hacer productos por dos cifras. Siempre es mejor que lo hagan así que no que no lo hagan de la otra manera.
3. Hay maestras que adelantan a 2º el inicio del producto por dos cifras, porque dominan pronto el de una cifra. Así, trabajan el producto por una cifra (pero decenas, no unidades), el de unidades y practican la suma desde otro tipo de ejercicios.

Teresa Simonet es maestra ABN de la primera oleada. Por eso inicia su tercer año con el grupo que comienza 3º. Tendremos más vídeos y fotos, y podremos seguir la evolución de ese grupo ( y de los niños que vienen por debajo) y aprender mucho de ellos.

miércoles, 14 de noviembre de 2012

Siguen las actividades de formación.

Pensaba que cuando acabara Octubre se tranquilizaría algo la actividad formativa en el método ABN requerida por los docentes. Pues no ha sido así o, por mejor decirlo, no ha sido así del todo. En Noviembre hemos tenido y nos queda lo siguiente:

Día 7. Reunión con representantes de los centros de Rota que trabajan con el método ABN. Asistió a la misma la Inspectora General de Educación de Andalucía.

Día 9. Ponencia-Comunicación en el VII Congreso de la Asociación de Inspectores de Educación de Andalucía, celebrado en Chiclana.

Día 13. Sesión de clausura del curso de metodología ABN en Cañada Rosal (Sevilla). Tuve la suerte de contar con la compañía y la ayuda de José Miguel de la Rosa.

Días 16 y 17. Curso de formación ABN en el Centro de Profesores y Recursos de Cartagena.

Día 19. Sesión de presentación del método ABN en el CEIP "Juan Apresa", de Arcos de la Frontera.

Día 20. Primera sesión del curso de formación en metodología ABN en el CEIP "Pablo de Olavide", de Prado del Rey (Cádiz, claro).

Día 27. Presentación del método ABN en el CEIP "San Bernardo", de Algeciras.

Día 29. Sesión de trabajo con los Inspectores e Inspectoras pertenecientes al Área Curricular de Matemáticas, en Antequera.

No vamos mal. A día de hoy las actividades de formación han alcanzado a más de mil personas.    

Más trabajos del curso ABN de Linares.

Teresa Martínez Delgado es una de las componentes del curso sobre algoritmos ABN que se está impartiendo en el CEP Linares- Andújar, para el cual ha preparado esta presentación del trabajo de sus alumnos.
Está tan bien hecha que casi vale por un curso de formación.

lunes, 12 de noviembre de 2012

LA ATENCIÓN A LA DIVERSIDAD EN EL ÁREA DE MATEMÁTICAS

Traslado aquí la comunicación presentada al VII Congreso de ADIDE Andalucía.

sábado, 10 de noviembre de 2012

Presentación del Algoritmo ABN

Antonia Casado Colón, maestra de 2 º de E. Primaria C.E.I.P. "Tetuan" de Linares ha realizado ésta simpática presentación del Algoritmo ABN que os dejamos a continuación. La ha desarrollado en el marco de un curso de formación sobre el cálculo ABN que se celebra en Linares. La presentación la hemos extraído de la red.



domingo, 4 de noviembre de 2012

Cuadrados de decenas completas y semidecenas

En el siguiente artículo incluimos actividades para trabajar el cálculo de cuadrados de números con decenas y centenas completas (20, 300,...) a las que añadimos números con decenas y semidecenas. 15, 25, 35,... En el artículo "Cuadrados de decenas y semidecena" se explica, partiendo de la rejilla para el cálculo del producto mediante el algoritmo ABN, cómo se debe operar, al objeto de que dicho calculo lo lleguen a realizar mentalmente el alumnado.
CÁLCULO DE CUADRADOS CON DECENAS Y SEMIDECENAS
En esta primera ficha se incluye una ejemplo de lo que anteriormente hemos dicho.
IDENTIFICAR LOS CUADRADOS DE LAS POTENCIAS DADAS
La solución a continuación...

Cuadrados de decenas y semidecena

Continuamos con la serie para "la progresión de los cuadrados y números similares". En este artículo explicamos las bases del cálculo que nos permitirá, partiendo del Producto ABN, simplificar el proceso hasta llegar al cálculo mental de cuadrados de decenas y semidecenas del tipo: 55², 45² , 75², ... En el siguiente ejemplo partimos de la rejilla ABN para el producto 55², que es lo mismo que 55 x 55 y los descomponemos en decenas y unidades (50 + 5) para situarlos en la rejilla, tal y como aparece en este primer gráfico. Si realizamos el producto cartesiano las operaciones quedaría así:

 
En primer ligar optemos el doble del primero (50) por el segundo (5), quedando así (50x5) + (50x5), o lo que es lo mismo, 50 x 10= 500
A continuación:
Obtenemos el cuadrado del primer número (50), que al tratarse de decenas completas es fácil de realizar: 50 x 50 = 2500 Y por último obtenemos el cuadrado del segundo número (5) (semidecena) que siempre será 25: 5 x 5 : 25. El resultado es la suma de todos los productos parciales  55² = 2500 + 500 + 25  = 3025.


Simplificando y resumiendo, para calcular mentalmente el cuadrado de una decena y semidecena 

 Con el 75² como ejemplo 1.-  Calculamos el cuadrado de la decena 70²  = 4900 2.- Calculamos el producto de las decenas 70 x 10 = 700 3.- Calculamos el producto de las unidades (semidecena) que siempre es 25: 5 x 5 = 25 4.- La suma total 4900 + 700 + 25 = 5625.

sábado, 3 de noviembre de 2012

Transición al Algoritmo ABN. Estrategias de cálculo mental

Rosa Piera es maestra del CEIP "Vicente Blasco Ibáñez", de Alzira (Valencia), y quiere colaborar con las propuestas de actividades y experiencias que propone a sus alumnos. Muchas gracias, Rosa, y a tu disposición.

Divisores ABN

Otra parte de la colaboración de Rosa Piera, desde Alzira (Valencia).