Dibujo ilustrativo de María del Carmen Peñalver (CEIP "Cervantes", de Madrid).
TERCER ARGUMENTO A FAVOR DE LA RESOLUCIÓN DE RAÍCES CUADRADAS EN PRIMARIA.
Lo afirmado en el SEGUNDO ARGUMENTO de la entrega anterior puede ser temerario si no se aclara su alcance. No se quiere decir que los alumnos tengan que aprender a resolver (de la misma forma en que tradicionalmente se resuelve una raíz cuadrada) cualquier raíz con cualquier índice. Sí se quiere decir que ese cálculo, sin el uso de procedimientos algebraicos, sí se haga en el caso de la raíz cuadrada. Cuando un alumno de ESO trabaja con radicales, está resolviendo raíces de distintos índices, e incluso raíces de raíces. Y las resuelve fundamentalmente a través de la descomposición factorial de los radicandos. Lo que defendemos aquí es que la raíz cuadrada debe ser el puente que permita pasar al alumno desde el cálculo ordinario que él domina al cálculo algebraico.El vídeo recoge los primeros pasos en la realización de raíces cuadradas inexactas con números de cuatro cifras. Son alumnos de 4º de Primaria, del CEIP "Lapachar", de Chipiona (Cádiz). El maestro es Juan Manuel Ávila.
CUARTO ARGUMENTO A FAVOR DE LA RESOLUCIÓN DE RAÍCES CUADRADAS EN PRIMARIA.
Las raíces cuadradas se deben aprender a resolver también por un sentido práctico. Tienen un gran protagonismo en la geometría (lados de cuadrados, hipotenusa de un triángulo rectángulo, etc.), en la estadística, en la resolución de ecuaciones de segundo grado, etc.Los dos últimos vídeos de esta entrada ejemplifican la sencillez que los alumnos resuelven raíces cuadradas complejas. ¡Ojo! Son alumnos de 9-10 años.
El niño se llama Antonio. Es de 4º de Primaria del CEIP "Dulce Chacón", de Cáceres. Es el curso 2018-2019 y es su maestra Victoria Muriel.
Por último, Vicente, que es alumno de 4º de Primaria del CEIP "Blasco Ibáñez", de Alzira (Valencia) y que tiene por maestra a Rosa Piera, también en el curso 2018-2019. Halla la raíz cuadrada de 6850.
No hay comentarios:
Publicar un comentario